Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(29): 19086-19098, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34337247

RESUMO

This series of two papers is devoted to the effect of organic dye (methylene blue, MB; or methyl orange, MO) adsorption on the surface of either bare or citrate-coated magnetic iron oxide nanoparticles (IONPs) on their primary agglomeration (in the absence of an applied magnetic field) and secondary field-induced agglomeration. The present paper (Part I) is focused on physicochemical mechanisms of dye adsorption and adsorption-induced primary agglomeration of IONPs. Dye adsorption to oppositely charged IONPs is found to be mostly promoted by electrostatic interactions and is very sensitive to pH and ionic strength variations. The shape of adsorption isotherms is correctly reproduced by the Langmuir law. For the particular MB/citrated IONP pair, the maximum surface density of adsorbed MB seems to correspond to the packing density of an adsorbed monolayer rather than to the surface density of the available adsorption sites. MB is shown to form H-aggregates on the surface of citrate-coated IONPs. The effective electric charge on the IONP surface remains nearly constant in a broad range of surface coverages by MB due to the combined action of counterion exchange and counterion condensation. Primary agglomeration of IONPs (revealed by an exponential increase of hydrodynamic size with surface coverage by MB) probably comes from correlation attractions or π-stacking aromatic interactions between adsorbed MB molecules or H-aggregates. From the application perspective, the maximum adsorption capacity is 139 ± 4 mg/g for the MB/citrated IONP pair (pH = 4-11) and 257 ± 16 mg/g for the MO/bare IONP pair (pH ∼ 4). Citrated IONPs have shown a good potential for their reusability in water treatment, with the adsorption efficiency remaining about 99% after nine adsorption/desorption cycles.

2.
J Mater Chem B ; 6(11): 1563-1580, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254273

RESUMO

Protein imprinted polymers have received a lot of interest in the past few years because of their applications as tailor-made receptors for biomacromolecules. Generally, the preparation of these polymers requires numerous and time-consuming steps. But their coupling with magnetic nanoparticles simplifies and speeds up the synthesis of these materials. Some recent papers describe the use of protein imprinted polymer (PIP) coupled to magnetic iron oxide nanoparticles (MION) for the design of MION@PIP biosensors. With such systems, a target protein can be specifically and selectively captured from complex media due to exceptional chemical properties of the polymer. Despite such performances, only a limited number of studies address these hybrid nanosystems. This review focuses on the chemistry and preparation of MION@PIP nanocomposites as well as on the metrics used to characterize their performances.

3.
Beilstein J Nanotechnol ; 7: 1447-1453, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826519

RESUMO

Wastewater cleaning strategies based on the adsorption of materials are being increasingly considered, but the wide variety of organic pollutants at low concentrations still makes their removal a challenge. The hybrid material proposed here consists of a zwitterionic polyethylenimine polymer coating a magnetic core. Polyethylenimine is phosphonated at different percentages by a one-step process and used to coat maghemite nanoparticles. It selectively extracts high amounts of cationic and anionic contaminants over a wide range of pH values, depending on the adjustable number of phosphonate groups introduced on the polymer. After recovering the nanoparticles with a magnet, pollutants are quantitatively released by repeated washing with low amounts of pH-adjusted water. The material can be reused many times without noticeable loss of efficiency and is designed to resist high temperatures, oxidation and harsh conditions.

4.
Eur Phys J E Soft Matter ; 38(8): 88, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26264396

RESUMO

We present a structural and a multi-scale rheophysical investigation of magneto-sensitive materials based on biopolymers, namely aqueous solutions of sodium alginate incorporating magnetic maghemite nanoparticles, functionalized with adsorbed negative citrate ions. The large alginate ionic strength impacts the structure and the rheology of these nanocomposites in zero magnetic field. In given physico-chemical conditions, the system is fluid and homogeneous on macroscopic scales while it is diphasic on microscopic ones, containing micro-droplets coming from the demixion of the system. These micro-droplets are liquid and deformable under magnetic field. Their under-field elongation and their zero-field relaxation are directly observed by optical microscopy to determine their interfacial tension, their magnetic susceptibility and their internal viscosity. A structural analysis of the solutions of alginate chains and of the phase-separated mixtures of alginate and nanoparticles by Small Angle Scattering completes the local description of the system.


Assuntos
Alginatos/química , Biopolímeros/química , Nanopartículas de Magnetita/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Campos Magnéticos , Nanocompostos/química , Concentração Osmolar , Reologia , Viscosidade
5.
J Colloid Interface Sci ; 457: 218-24, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26188728

RESUMO

The paper focuses on the removal of p-nitrophenol by an adsorption process. A magnetic adsorbent was synthesized by encapsulation of magnetic functionalized nanoparticles using alginate as a green biopolymer matrix. A cationic surfactant, cetylpyridinium chloride (CPyCl), was used to confer a hydrophobic character to the magnetic beads and thus to promote their adsorption efficiency. The effect of different parameters such as initial concentrations of both PNP and CPyCl, contact time and solution pH value on the adsorption of PNP in the presence of CPyCl was investigated. It should be noted that combination of magnetic and adsorption properties in a same material is an interesting challenge which could overcome the recovery problems of pollutant-loaded adsorbent.

6.
J Colloid Interface Sci ; 432: 182-9, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25086393

RESUMO

Adsorption of cetylpyridinium chloride (CPC), a cationic surfactant, by magnetic alginate beads (MagAlgbeads) was investigated. The magnetic adsorbent (called magsorbent) was prepared by encapsulation of magnetic functionalized nanoparticles in an alginate gel. The influence on CPC adsorption of several parameters such as contact time, pH and initial surfactant concentration was studied. The equilibrium isotherm shows that adsorption occurs through both electrostatic interactions with charge neutralization of the carboxylate groups of the beads and hydrophobic interactions inducing the formation of surfactant aggregates in the beads. The dosage of calcium ions released in the solution turns out to be a useful tool for understanding the adsorption mechanisms. Adsorption is accompanied by a shrinking of the beads that corresponds to a 45% reduction of the volume. Adsorption kinetic experiments show that equilibrium time is strongly dependent on the surfactant concentration, which monitors the nature of the interactions. On the other hand, since the pH affects the ionization state of adsorption sites, adsorption depends on the pH solution, maximum adsorption being obtained in a large pH range (3.2-12) in agreement with the pKa value of alginate (pKa=3.4-4.2). Finally, due to the formation of micelle-like surfactants aggregates in the magnetic alginate beads, they could be used as a new efficient magsorbent for hydrophobic pollutants.

7.
J Colloid Interface Sci ; 410: 52-8, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23998368

RESUMO

In this study, magnetic beads were prepared by encapsulation of magnetic nanoparticles in epichlorohydrin cross-linked chitosan beads. Their adsorption characteristics were assessed by using methyl orange (MO) as an adsorbate. MO adsorption onto chitosan beads was found to be optimal in the pH range of 3-5. The adsorption isotherm was well described by the Langmuir model and showed high MO adsorption capacity (2.38 mmol/g, i.e. 779 mg/g). MO adsorption kinetics followed a pseudo-second-order kinetic model, indicating that adsorption was the rate-limiting step. At 0.305 mmol/L, only 19 min was required to reach 90% adsorption and 50% of the MO was adsorbed in 2 min. Desorption studies of MO using NaOH showed the reusability of the magsorbent. No release of iron species was observed at pH>2.4.

8.
J Colloid Interface Sci ; 364(2): 324-32, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21925671

RESUMO

A green and inexpensive alternative to existing methods for the preparation of magnetic iron oxide/silica nanocomposite particles has been investigated. The use of water-in oil emulsions based on vegetable oils instead of usual solvents led to microsized or nanosized magnetic silica spheres exhibiting similar characteristics to those of classical procedures. Furthermore this approach is very general since a large class of porous magnetic colloids differing in size or iron oxide fraction has been obtained. This work emphasizes the importance of the level of the shearing during the emulsification step with regard to the size and monodispersity of the prepared beads. All the materials prepared were fully characterized (SEM and TEM microscopies, SQUID magnetometry, N(2) sorption volumetry, etc.). In addition, samples functionalized by thiol groups have been synthesized and successfully tested for the removal of heavy metals in water-treatment.

9.
J Colloid Interface Sci ; 362(2): 486-92, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21767847

RESUMO

A magnetic adsorbent (called magsorbent) was developed by encapsulation of magnetic functionalized nanoparticles in calcium-alginate beads. The adsorption of Pb(II) ions by these magnetic beads was studied and the effect of different parameters, such as initial concentration, contact time and solution pH value on the adsorption of Pb(II) ions was investigated. Our magsorbent was found to be efficient to adsorb Pb(II) ions and maximal adsorption capacity occurred at pH 2.3-6. The classical Langmuir model used to fit the experimental adsorption data showed a maximum sorption capacity close to 100 mg g(-1). The experimental kinetic data were well correlated with a pseudo second-order model, 50% of the Pb(II) ions were removed within 20 min and the equilibrium was attained around 100 min. Moreover our magsorbent was easily collected from aqueous media by using an external magnetic field. These results permitted to conclude that magnetic alginate beads could be efficiently used to remove heavy metals in a water treatment process.


Assuntos
Chumbo/isolamento & purificação , Microesferas , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Alginatos , Concentração de Íons de Hidrogênio , Cinética , Imãs
10.
J Hazard Mater ; 178(1-3): 434-9, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20153928

RESUMO

Innovative magnetic alginate beads are used to remove organic pollutants from aqueous solution under different experimental conditions. These alginate beads (EpiMAB) are prepared by an extrusion technique and crosslinked with epichlorohydrin. They contain both magnetic nanoparticles and activated carbon (AC). With the addition of magnetic properties, the beads can be easily recovered or manipulated with an external magnetic field. Their capacity to adsorb pollutants is linked to encapsulated AC and to active sites coming from both magnetic nanoparticles and alginate. The efficiency of the beads as biosorbent for the removal of dyes is assessed using methyl orange (MO) and methylene blue (MB) as model molecules. The dye uptake is found to vary with the initial concentration and the charge of the adsorbed molecule. The Langmuir equation fits well the adsorption data with maximum adsorption capacities of 0.02 mmol/g for MO and 0.7 mmol/g for MB. Kinetics experiments are performed to evaluate the equilibrium time; the pseudo-second-order kinetic model adequately describes the experimental data. The influence of the pH of the solution on adsorption is also investigated and a comparison with alginate beads crosslinked by calcium ions is made.


Assuntos
Alginatos/química , Corantes/isolamento & purificação , Epicloroidrina/química , Adsorção , Compostos Azo/química , Cátions/química , Reagentes de Ligações Cruzadas , Compostos Férricos , Concentração de Íons de Hidrogênio , Cinética , Magnetismo , Azul de Metileno/química , Modelos Estatísticos , Soluções , Solventes , Termodinâmica
11.
Water Res ; 44(6): 1683-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19963234

RESUMO

Magnetically separable photocatalyst beads containing nano-sized iron oxide in alginate polymer were prepared. This magnetic photocatalyst beads are used in slurry-type reactors. The magnetism of the catalyst arises from the nanostructured particles gamma-Fe(2)O(3), by which the catalyst can be easily recovered by the application of an external magnetic field. These synthesized beads are sunlight-driven photocatalyst. In the system without magnetic photocatalyst beads, no chromium reduction was observed under sunlight irradiation due to the stability of the chromium (VI). Upon the addition of magnetic photocatalyst beads, the photo-reduction of Cr(VI) was completed in just after only 50min under sunlight irradiation due to the photocatalytic activity of the beads. However when placed away from sunlight, the reduction rate of the chromium is just about 10%. These observations were explained in terms of absorption occurrence of chromium (VI) onto the catalyst surface which took place in this reaction. In addition, photo-reduction rate of chromium (VI) was more significant at lower pH. The results suggest that the use of magnetic separable photocatalyst beads is a feasible strategy for eliminating Cr(VI).


Assuntos
Cromo/química , Luz , Magnetismo , Microesferas , Alginatos/química , Catálise/efeitos da radiação , Compostos Férricos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Oxirredução , Tamanho da Partícula , Fotoquímica , Difração de Raios X
12.
J Hazard Mater ; 166(2-3): 1043-9, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19157703

RESUMO

In this study, a series of batch experiments is conducted to investigate the ability of magnetic alginate beads containing Cyanex 272 to remove Co(II) ions from aqueous solutions. Equilibrium sorption experiments show a Co(II) uptake capacity of 0.4 mmol g(-1). The data are successfully modelled with a Langmuir equation. A series of kinetics experiments is then carried out and a pseudo-second order equation is used to fit the experimental data. The effect of pH on the sorption of Co(II) ions is also investigated. Desorption experiments by elution of the loaded beads with nitric acid at pH 1 show that the magnetic alginate beads could be reused without significant losses of their initial properties even after 3 adsorption-desorption cycles.


Assuntos
Alginatos/química , Cobalto/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Magnetismo , Microesferas , Ácidos Fosfínicos
13.
Water Res ; 42(4-5): 1290-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17980401

RESUMO

This study deals with the development of a clean and safe process for water pollution remediation. We have synthesized a magnetic adsorbent in order to develop a solid-phase extraction process assisted by a magnetic field. To follow an 'ecoconception' approach, magnetic beads containing magnetic nanoparticles and activated carbon are prepared with a biopolymer extracted from algae, sodium alginate. The use of renewable bioresources of low cost and those disposable in large amount allows the development of a product with a low impact on the environment. The adsorption properties of activated carbon and magnetic properties of iron oxide nanoparticles are combined to produce an interesting magnetic composite. Synthesis and characterization of the magnetic beads have been reported. Their adsorption capacity was investigated by measuring the removal of two dyes (methylene blue and methyl orange) of different charges from aqueous solutions. The efficiency of the beads has been compared with that of non-encapsulated activated carbon. The effects of initial dye concentration, pH and calcium content of the beads have been studied. Adsorption kinetics experiments have been carried out and the data have been well fitted by a pseudo-second-order equation.


Assuntos
Alginatos/química , Carbono/química , Corantes/química , Compostos Férricos/química , Nanopartículas/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Compostos Azo/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Cinética , Magnetismo , Azul de Metileno/química , Purificação da Água/métodos
14.
Water Res ; 40(9): 1848-56, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16631227

RESUMO

The adsorption of heavy metals on biomaterials was investigated by studying the potential of alginate microcapsules containing an extractant (Cyanex 272) and magnetic nanoparticles (gamma-Fe2O3) for the adsorption of nickel (II) from aqueous solutions. A two-stage kinetics behaviour was observed with 70% of the maximum sorption capacity achieved within 8 h. An increase in nickel removal with increase in pH occurred, the maximum uptake capacity being around 0.42 mmol g-1 at pH 8. The adsorption isotherm (pH about 5.3) was obtained in a wide range of initial nickel concentrations; the experimental data were fitted by a Langmuir model and the qmax value was estimated to be 0.52 mmol g-1. Moreover, including magnetic particles in the microcapsules allowed easy isolation of the beads from the aqueous solutions after the sorption process. Magnetic microcapsules are then suitable for the development of efficient biosorbents for removal and recovery of heavy metals from wastewater using magnetic separation.


Assuntos
Alginatos/química , Nanopartículas/química , Níquel/farmacocinética , Poluição Química da Água , Purificação da Água/métodos , Adsorção , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Resíduos Industriais/análise , Troca Iônica , Magnetismo , Compostos Organofosforados/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...